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Abstract

Linear beam-envelope theory of ionization cooling in 6D phase space has been systematically established in the past

few years. In this paper, we briefly review the general formalism as well as the specific theories for a quadrupole channel

and a bent-solenoidal channel with symmetric focusing. These channels play important roles in the design of cooling

channels for the envisioned neutrino factories and muon colliders. The analytical solutions of these channels are

relatively simple yet provide good understanding of cooling and heating mechanisms in both transverse and

longitudinal phase spaces. Furthermore, the resulting formulae can be used to evaluate cooling channel designs the

same way as the radiation integrals are used in storage ring designs.
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1. Introduction

Ionization cooling is the only promising process
that can substantially cool a muon beam within a
muon’s short lifetime and make it useful for the
envisioned neutrino factories and muon colliders
[1–5]. The mechanism of ionization cooling is
similar to the mechanism of radiation damping
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despite the differences in fundamental interactions.
In both cases, particles lose incoherent momentum
by either radiating photons or ionizing atoms, and
gain coherent momentum through an accelerating
field only in the beam forward direction. Coexist-
ing with this cooling mechanism are heating
mechanisms due to stochastic processes: quantum
excitation in case of radiation damping, and
multiple scattering and energy straggling in case
of ionization cooling. The similarity suggests that
the well-established formalism for radiation damp-
ing [6–12] can be adapted for ionization cooling.
Neuffer [13] has treated ionization cooling intui-
tively as Sands [6] did for radiation damping. In
recent years, ionization cooling has been treated
with the beam moment equation approach by
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many authors [14–20] and a linear beam-envelope
theory has been established, which is an analog of
the theory of radiation damping [11]. This theory
provides a better understanding of ionization
cooling, unveils new heating mechanisms, and
can be used to estimate cooling channel perfor-
mance. In the following we briefly review this
theory.
2. General formalism of the beam-envelope theory

In our discussion we work with the phase-space
vector X ¼ ðx; px; y; py; z; dÞ

T; where ðx; y; zÞ are
positions relative to the reference particle, px

and py are transverse canonical momenta normal-
ized by the reference momentum p0; and
d ¼ ðE � E0Þ=b

2
0E0CDp=p0:

1 The linearized equa-
tion of motion using path length s as the time
variable is of the general form

dX

ds
¼ JHX þ AX þ X: ð1Þ

Here, the first term on the right-hand side is the
Hamiltonian part of the motion, where J is the
symplectic identity matrix,2 and H is the sym-
metric matrix associated with the Hamiltonian H

via H ¼ XTHX=2: The Hamiltonian part contains
the dominating macroscopic forces that provide
focusing, acceleration, and dispersions if neces-
sary. The last two terms represent the microscopic
interactions with materials giving rise to ionization
damping (the second term) and stochastic excita-
tions (the third term) from multiple scattering and
energy straggling.
For the Hamiltonian part, we consider a general

cooling channel that uses either a solenoidal
field or a quadrupole field or both for focusing,
and a vertical dipole field for dispersion. The
magnetic field in the usual Frenet–Serret coordi-
nate system fx; y; sg can be written, up to the linear
1Note that, since the momenta are normalized by p0; the
emittances in our discussion are the geometrical emittances.

Our coordinate system is the same as the one used in the MAD

program except for a scaling factor b0 in the longitudinal

variables.
2J ¼ diagðJ2; J2; J2Þ and J2 ¼ 0

�1
1
0

� �
:

order, as

Bxðx; y; sÞ ¼ �
1

2
b0
sx þ b1y ð2aÞ

Byðx; y; sÞ ¼ b0 þ b1x �
1

2
b0
sy ð2bÞ

Bsðx; y; sÞ ¼ bs � kbsx þ b0
0y ð2cÞ

where bs; b0; b1 are the solenoidal, dipolar,
quadrupolar components. A prime indicates dif-
ferentiation with respect to s: kðsÞ is the curvature
of the reference orbit and is normally chosen to be
kðsÞ ¼ qb0ðsÞ=p0 for a reference particle of charge q

and nominal momentum p0:
The Hamiltonian governing particle motion in a

linear approximation in the above magnetic field
can be worked out as3 [21]

H ¼
1

2
ðp2x þ p2yÞ þ

1

2
#b2s ðx

2 þ y2Þ � #bsLz

�
xd
rðsÞ

þ
x2

2rðsÞ2
þ
1

2
#b1ðx2 � y2Þ

þ
1

2

1

g20
d2 þ V ðsÞz2

� �
ð3Þ

where

#bs ¼
q

2p0
bs ¼

q

2p0
Bsð0; 0; sÞ

#b1 ¼
q

p0
b1 ¼

q

p0

@By

@x

����
x¼y¼0

1

r
¼ k ¼

q

p0
b0 ¼

q

p0
Byð0; 0; sÞ

Lz ¼ xpy � ypx

is the canonical angular momentum, and g0 is the
Lorentz factor of the reference particle. Note that
only the zero-order longitudinal field bs plays a
role here because the Lorentz force resulting from
the longitudinal field already depends on the small
transverse momentum. Furthermore, the field
components involving b0

s do not play an explicit
role because we are working with canonical
momentum. For the longitudinal motion we added
a simple oscillator with focusing strength V ðsÞ and
assumed no acceleration of the reference particle.
3The 1=g20 factor was omitted in a couple of our early papers
including Ref. [20]. Thanks to Neuffer for pointing this out.
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This Hamiltonian covers most of the cooling
channels under consideration.
For the material part of the equation of motion,

the following simple model is used to describe the
microscopic forces due to ionization and multiple
scattering:

dx

ds

����
M

¼
dy

ds

����
M

¼
dz

ds

����
M

¼ 0 ð4aÞ

dpx

ds

����
M

¼ �Zðpx þ #bsyÞ þ
ffiffiffi
w

p
xMSx ð4bÞ

dpy

ds

����
M

¼ �Zðpy � #bsxÞ þ
ffiffiffi
w

p
xMSy ð4cÞ

dd
ds

����
M

¼ �ð@dZÞd� ð@xZÞx � ð@yZÞy þ
ffiffiffiffiffi
wd

p
xESz : ð4dÞ

In this model, interaction is instantaneous, and
thus there is no change in position. Since ioniza-
tion affects the magnitude but not the direction of
the particle momentum, the kinematic momentum
change d~pp=ds ¼ dp=ds~pp=p ¼ �Z~pp where

Z 	
1

pv

dE

ds

����
���� ð5Þ

is a positive quantity characterizing the average
force due to ionization energy loss for a particle of
kinematic momentum p and velocity v: This leads
to the first r.h.s. terms in the transverse momen-
tum equations, where the vector potential terms
#bsx and #bsy convert canonical momentum to
kinematic momentum. Since the effect of ioniza-
tion energy loss on the reference particle is
assumed to be compensated by acceleration,
dd=ds is affected only by deviations from the
average loss, which leads to the first three terms in
the energy equation.
Effects of multiple scattering and energy strag-

gling are modelled as random kicks to the
momentum and energy. Multiple scattering is
characterized by the projected mean-square angu-
lar deviation per unit length

w ¼
13:6 MeV

pv

� 	2
1

Lrad
ð6Þ

where Lrad is the radiation length of absorbers.
Energy straggling is characterized by the mean-
square relative energy deviation per unit length wd:
The stochastic nature of multiple scattering and
energy straggling are modelled by the uncorrelated
unit stochastic quantities xMSx ðsÞ; xMSy ðsÞ; and
xESz ðsÞ: To avoid complexity arising from the
geometry of absorbers, we assume absorbers have
uniform thickness but certain density variation to
account for the thickness variation (in wedged
absorbers, for example). Thus Z; w; and wd may
depend on a muon’s transverse position through
density variation. The properties of ionization,
energy straggling, and multiple scattering had been
extensively studied, and considered by Neuffer in
the context of ionization cooling as well. In
particular, the energy loss rate dE=ds is given by
the Bethe–Bloch formula, and the wd can be
estimated by [5,22,23]

wd ¼
1

ðpvÞ2
d/DE2

rmsS
ds

C 4pNAr2e
me

mm

� 	2

r
Z

A

1

b4
1�

b2

2

� 	
ð7Þ

where NA is the Avogadro constant; re is the
classical radius of an electron; me and mm are the
masses of the electron and muon; r; Z; and A

are the density, atomic number, and weight of
the material; and b is the muon’s velocity factor.
The simple model used in Eqs. (4a–c) has been
shown to agree with simulations for transverse
cooling [17,24].
The equations of motion, Eq. (1) with Eqs. (3)

and (4), govern beam evolution in a cooling
channel. Such stochastic differential equations
are normally treated with a Fokker–Planck
equation to solve for average phase-space distribu-
tion. For linear dynamics, moment equations
provide a simpler alternative by solving the
quadratic moments of phase-space distribution,
i.e., S ¼ /XXTS where the average is over
the phase space as well as stochastic processes.
The moment equations corresponding to Eq. (1)
read

dS
ds

¼ ðJH þ ADÞSþ SðJH þ ADÞ
T þ B: ð8Þ
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5This remarkable scalar product was introduced by Ruggiero

et al. [11]. It resembles the usual scalar product of vectors via

TrðABTÞ ¼
P

fi;jg AijBij : The use of the symplectic conjugate
makes it invariant for any symplectic transformation %X ¼ MX ;
because the moments transform as %S ¼ MSMT and the scalar

product transforms as ð %A; %BÞ ¼ �1
2
TrðMAMTJMBMTJÞ ¼

�1
2
TrðAJBJÞ ¼ ðA;BÞ; where MTJM ¼ J since M is symplec-

tic. Also note the close connection of this scalar product with

C.-x. Wang, K.-J. Kim / Nuclear Instruments and Methods in Physics Research A 532 (2004) 260–269 263
Here the damping matrix

AD ¼
A � JATJ

2

¼ �
1

2

Z 0 0 0 0 0

0 Z 2Z #bs 0 �@xZ 0

0 0 Z 0 0 0

�2Z #bs 0 0 Z �@yZ 0

0 0 0 0 @dZ 0

@xZ 0 @yZ 0 0 @dZ

0
BBBBBBBB@

1
CCCCCCCCA

ð9Þ

is the dissipative part of A: The Hamiltonian part
ðA þ JATJÞ=2 is dropped assuming that it is a
negligible perturbation to H : The diffusion matrix

B ¼ diagð0; w; 0; w; 0; wdÞ ð10Þ

arises from the stochastic excitations represented
by X:
Before addressing the solution of the moment

equations, let us mention an important general
theorem on the damping rate of the phase-space
volume, known as Robinson’s theorem [25] in
radiation damping. Without excitation, the 6D

emittance e6D 	
ffiffiffiffiffiffiffiffiffiffiffi
det S

p
damps as4

e�16D
de6D
ds

¼ TrAD ¼ �ð2Zþ @dZÞ ð11Þ

which holds for all cooling channels. The damping
rates partitioned for individual subspaces can be
manipulated by a channel design, but the overall
damping is limited by this theorem.
The moment equations represent a coupled

evolution of the 21 independent moments in the
symmetric 6
 6 matrix S: In general they are too
complicated for analytical treatment. However,
the system becomes greatly simplified if material
interactions are small perturbations and consid-
eration is limited to the behavior near equilibrium.
Our treatment here follows Ref. [11]. Since the
interactions with material are weak, the moment
equations can be solved perturbatively. First we
solve the Hamiltonian evolution

dSH
ds

¼ ðJHÞSH þ SHðJHÞT: ð12Þ
4Proof is straightforward using djSj=ds ¼ TrðjSjS�T dS=dsÞ
and the moment equations.
The solutions of this homogeneous equation form
a linear space, on which an invariant scalar
product can be defined as5

ðR;SÞ ¼
1

2
TrðRSþÞ ð13Þ

where Sþ 	 �JSTJ is the symplectic conjugate of
S: With this scalar product, we can define an
orthogonal basis fsag for the solution space,
where sa satisfies Eq. (12) with periodic boundary
conditions and orthogonality ðsa;sbÞ ¼ dab; and
express any stationary solution as a linear combi-
nation of them, i.e.,

SH ¼
X
a

easa and ea ¼ ðSH;saÞ: ð14Þ

The periodic solution SH represents the equili-
brium Gaussian distribution in the Hamiltonian
channel. If a beam initial distribution matches SH;
it stays stationary, otherwise it evolves toward SH
through filamentation. Our cooling consideration
assumes a stationary initial distribution. Note that
the sa depend on the lattice functions that are
determined by the Hamiltonian of a channel. On
the other hand ea’s, called generalized emittances,
are beam properties determined by the beam
distribution. Usually there are three emittances in
6D phase space, but there may be a few more if
there are degeneracies. Like the 6D emittance e6D;
these subspace emittances are conserved under
Hamiltonian flow due to the invariant property of
the scalar product. The relation between e6D and ea
is nontrivial and depends on the phase-space
structure of the Hamiltonian flow. Furthermore,
it is easy to see that ðXXT;saÞ is a quadratic
invariant of single-particle motion, whose average
leads to emittance. Therefore, finding all linearly
independent quadratic invariants effectively
many other kinematic moment invariants found around the

same time (for example, F. Neri, G. Rangarajan, Phys. Rev.

Lett. 64(10) (1990) 1073 and A. Dragt, in Ref. [26], p. 81).
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amounts to solving the moment equation (12), and
vice versa.
After solving the Hamiltonian evolution, we

solve the evolution of the original system, Eq. (8),
assuming the same beam envelope but with
evolving emittances, i.e., S ¼

P
a eaðsÞsa: It can

be shown that the errors are next-order perturba-
tions. This leads to the emittance evolution
equation

dek

ds
¼

X
a

2ðADsa;skÞea þ ðB;skÞ ð15Þ

where we have used the fact ðADsa; skÞ ¼
ðsaAT

D;skÞ: The two r.h.s. terms describe the
damping and excitation, respectively. The balance
of these two terms determines the equilibrium
emittances, while the coefficients of the damping
term determine the damping constants. Note that
although Eq. (15) describes only the evolution of a
beam with matched initial distribution, the equili-
brium emittances depend on neither the initial
conditions nor the routes evolving toward the
equilibrium. The emittance evolution equation is a
triumph of the beam-envelope theory. Comparing
to the moment equations, Eq. (15) is a much
smaller set of first-order differential equations, yet
it determines beam evolution during the cooling
process. Furthermore, the emittances evolve much
more slowly than the moments and do not change
much in a period, thus it is usually a good
approximation to average Eq. (15) over a period,
which makes it easy to solve. Finally, thanks to the
scalar product, Eq. (15) is invariant under canoni-
cal transformations.
3. Canonical transformations and lattice functions

To solve for the matrices sa; we reduce the
Hamiltonian Eq. (3) to a simple decoupled form
via successive canonical transformations. From
the decoupled Hamiltonian, the quadratic invar-
iants and lattice functions become obvious.
First, we remove the angular momentum term

by rotating to the Larmor frame that rotates
around the longitudinal axis at half of the
cyclotron frequency. Using the tilde B over a
symbol to indicate that it is in the Larmor frame,
the transformation reads

x

px

y

py

0
BBB@

1
CCCA ¼ TR

*x

*px

*y

*py

0
BBB@

1
CCCA

TR ¼

cos y 0 sin y 0

0 cos y 0 sin y

�sin y 0 cos y 0

0 �sin y 0 cos y

0
BBB@

1
CCCA ð16Þ

where yðsÞ ¼
R s

0
#bsð%sÞ d%s is the rotating angle of the

Larmor frame. Here we omitted the identity
longitudinal transformation in TR: The generating
function reads

F2 ¼ x½ *px cos yþ *py sin y


þ y½ *py cos y� *px sin y
: ð17Þ

In the Larmor frame, the Hamiltonian becomes

*H ¼
1

2
ð *p2x þ *p2yÞ þ

1

2
ðK þ Ka cos 2yÞ *x2

þ
1

2
ðK � Ka cos 2yÞ *y2

þ Ka sin 2y *x *y �
*xd cos y

r
�

*yd sin y
r

þ
1

2

1

g20
d2 þ Vz2

� �
ð18Þ

where the symmetric focusing strength K ¼
#bsðsÞ

2 þ 1=2rðsÞ2 and the asymmetric focusing
strength Ka ¼ #b1ðsÞ þ 1=2rðsÞ2:
Second, we remove the coupling between the

transverse and longitudinal motions by introdu-
cing the dispersions *Dx; *Dy and a corresponding
canonical transformation

*x

*px

*y

*py

z

d

0
BBBBBBBB@

1
CCCCCCCCA

¼ TD

*xb

*pxb

*yb

*pyb

#z

#d

0
BBBBBBBB@

1
CCCCCCCCA
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TD ¼

1 0 0 0 0 *Dx

0 1 0 0 0 *D0
x

0 0 1 0 0 *Dy

0 0 0 1 0 *D0
y

� *D0
x

*Dx � *D0
y

*Dy 1 0

0 0 0 0 0 1

0
BBBBBBBBB@

1
CCCCCCCCCA

ð19Þ

which can be generated by the generating function

F ¼ ð *x � *DxdÞ *pxb þ *D0
x *xdþ ð *y � *DydÞ *pyb

þ *D0
y *yd� #zd�

1

2
ð *Dx

*D0
x þ *Dy

*D0
yÞd

2: ð20Þ

The transformed Hamiltonian *Hb is complicated.
However, it can be dramatically simplified and
decoupled by requiring (i) the cavity regions are
dispersion free and (ii) the dispersion functions
satisfy the differential equations6

*D00
x þ ðK þ Ka cos 2yÞ *Dx þ Ka sin 2y *Dy

¼
cos y
r

ð21aÞ

*D00
y þ ðK � Ka cos 2yÞ *Dy þ Ka sin 2y *Dx

¼
sin y
r

: ð21bÞ

Under these two conditions, the Hamiltonian
reduces to

*Hb ¼
1

2
ð *p2xb

þ *p2ybÞ þ
1

2
ðK þ Ka cos 2yÞ *x2b

þ
1

2
ðK � Ka cos 2yÞ *y2b

þ Ka sin 2y *xb *yb þ
1

2
ðId2 þ V #z2Þ: ð22Þ

Here

IðsÞ ¼
1

g20
�

*Dx cos½yðsÞ

rðsÞ

�
*Dy sin½yðsÞ


rðsÞ

is the negative of the usual phase-slip factor.
Now we still have the *xb *yb coupling term to

remove. Although this is possible in principle with
a procedure such as the one in Ref. [27], we will
not pursue it here. Instead we discuss two
important channels that do not have this coupling
6This is a generalization of the well-known dispersion

equation for a quadrupole channel where y ¼ 0:
term: quadrupole focusing channels where y ¼ 0
and solenoidal focusing channels with symmetric
focusing where Ka ¼ 0: Beside the practical
usefulness of these channels, their analytical
solutions illustrate important features of ioniza-
tion cooling and provide formulae for estimating
cooling channel performance.
Without the *xb *yb coupling term, *Hb is fully

decoupled and the lattice functions for each degree
of freedom can be introduced analogous to the
well-known Courant–Snyder theory [28]. Let us
introduce lattice functions (bT; aT; gT) for the
transverse degrees of freedom, which satisfy the
familiar equations

b0T ¼ �2aT; a0T ¼ KTðsÞbT � gT;

gT ¼
1þ a2T
bT

ð23Þ

where KT ¼ K7Ka for the horizontal or vertical
plane in a quadrupole channel and KT ¼ K for a
solenoidal channel. The longitudinal lattice func-
tions (bL; aL; gL) satisfy similar equations

b0L ¼ �2IðsÞaL; a0L ¼ V ðsÞbL � IðsÞgL;

gL ¼
1þ a2L
bL

: ð24Þ

With periodic boundary conditions, these lattice
functions describe the transverse and longitudinal
machine ellipses that characterize the betatron and
synchrotron oscillations.
The Courant–Snyder invariant for each de-

coupled subspace ðq; pÞ has the well-known form

I ¼ gq2 þ 2aqp þ bp2: ð25Þ

The corresponding s-matrix has the generic form

#s ¼
b �a

�a g

� 	
ð26Þ

which is the basic building block for constructing
the orthogonal set fsag for 6D phase space. To
specify the subspaces, subscripts will be given to #s
and the corresponding lattice functions.
4. Quadrupole cooling channel

In quadrupole channels there is no lon-
gitudinal field, the Hamiltonian in Eq. (22)
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reduces to

Hb ¼
1

2
ðp2xb

þ p2ybÞ þ
1

2
ðK þ KaÞx2b

þ
1

2
ðK � KaÞy2b þ

1

2
ðId2 þ V #z2Þ: ð27Þ

Usually there is no degeneracy among the three
decoupled degrees of freedom. Thus the Hamilto-
nian Hb has three independent quadratic invar-
iants, two transverse and one longitudinal
Courant–Snyder invariants. The three orthogonal
s-matrices in the decoupled frame are

sxb ¼

#sx 0 0

0 0 0

0 0 0

0
B@

1
CA; syb ¼

0 0 0

0 #sy 0

0 0 0

0
B@

1
CA and

s#z ¼

0 0 0

0 0 0

0 0 #sz

0
B@

1
CA: ð28Þ

To compute the coefficients of the emittance
evolution equation, Eq. (15), the damping and
diffusion matrices and the sa matrices need to be
transformed to the same frame and then the scalar
products computed. The results read

e0x ¼ �½Z� ð@xZÞDx
ex þ
1

2
bxwþ

1

2
Hxwd ð29aÞ

e0y ¼ �Zey þ
1

2
byw ð29bÞ

e0z ¼ �½@dZþ ð@xZÞDx
ez þ
1

2
bzwd þ

1

2
gzD2

xw ð29cÞ

where Hx 	 gxD2
x þ 2axDxD0

x þ bxD02
x : The 6D

emittance e6D ¼ exeyez:
Eq. (29) governs emittance evolution in a quad-

rupole cooling channel. The vertical equation is
the well-known equation [26] for transverse cool-
ing. Since the @dZ term usually provides little
longitudinal cooling, the term ð@xZÞDx is used to
partition part of the transverse cooling power to
the longitudinal plane, a scheme known as
emittance exchange. The two indispensable ingre-
dients for emittance exchange, dispersion Dx and
wedged absorber represented by @xZ; show up here
in a single product. The bx;yw=2 terms in the
transverse equations are the well-known heating
terms due to multiple scattering. The bzwd term in
the longitudinal emittance is analogous to the bxw
term in the transverse emittance. The last terms in
the horizontal and longitudinal equations are extra
heating terms first revealed through our systematic
treatment [19], which need to be controlled in
cooling channel designs. Ref. [29] examined the
new transverse heating term due to straggling in
the context of current cooling channel designs.
The three emittances in Eq. (29) evolve indepen-

dently according to first-order inhomogeneous
differential equations that can be solved analyti-
cally. We refer the reader to Ref. [19] for the details
and only list here the equilibrium emittances

eNx ¼
W1 þW3

z1 � z3
; eNy ¼

W1

z1
;

eNz ¼
W2 þW4

z3 þ z4
ð30Þ

and the cooling length l at which distance the
emittance is damped by e-fold

lx ¼
l

z1 � z3
; ly ¼

l
z1
; lz ¼

l
z3 þ z4

: ð31Þ

Here l is the cooling channel period, z’s and W’s
are given by

z1 ¼
Z l

0

ds Z; z3 ¼
Z l

0

ds @xZDx;

z4 ¼
Z l

0

ds @dZ ð32Þ

and

W1C
1

2

Z l

0

ds bxw; W2C
1

2

Z l

0

ds bzwd

W3C
1

2

Z l

0

ds Hxwd; W4C
1

2

Z l

0

ds gzD2
xw: ð33Þ

These integrals are analogs of the well-known
radiation integrals of radiation damping in electron
storage rings, and could be referred to as ionization
integrals, scattering integrals, and straggling inte-
grals.
5. Solenoidal cooling channel

Solenoid channels are the primary candidates
for transverse cooling channels [1–4]. To achieve
emittance exchange, a dipole field is added to
generate dispersion. Since the main solenoid field
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continuously rotates the beam and tends to make
the beam rotationally symmetric, it is advantageous
to have symmetric focusing by setting Ka ¼ 0; which
can be achieved with gradient dipoles whose
quadrupole components are tied to the bending
radius as #b1ðsÞ ¼ �1=2rðsÞ2: With symmetric focus-
ing, the Hamiltonian in Eq. (22) reduces to

*Hb ¼
1

2
ð *p2xb

þ *p2ybÞ þ
1

2
Kð *x2b þ *y2bÞ

þ
1

2
ðId2 þ V #z2Þ: ð34Þ

Although the three degrees of freedom are fully
decoupled, there are obvious degeneracies in the
transverse degrees of freedom, which result in two
more invariants other than the Courant–Snyder
invariants for each degrees of freedom. One is the
canonical angular momentum Lz due to the rotation
symmetry of the system. The other more subtle
invariant Ixy can be found from the Poisson bracket
of the canonical angular momentum and a trans-
verse Courant–Snyder invariant. Explicitly, the five
invariants read

Ix ¼ gT *x
2
b þ 2aT *xb *pxb þ bT *p

2
xb

ð35aÞ

Iy ¼ gT *y
2
b þ 2aT *yb *pyb þ bT *p

2
yb

ð35bÞ

Iz ¼ gL #z
2 þ 2aL #zdþ bLd

2 ð35cÞ

Ixy ¼ gT *xb *yb þ 2aT
*xb *pyb þ *yb *pxb

2

þ bT *pxb *pyb ð35dÞ

Lz ¼ *xb *pyb � *yb *pxb : ð35eÞ

The corresponding sa matrices are those in Eq. (28)
with #sx ¼ #sy ¼ #sT and the following two that are
due to the new invariants

sxy ¼
1ffiffiffi
2

p
0 #sT 0

#sT 0 0

0 0 0

0
B@

1
CA and

sL ¼
1ffiffiffi
2

p
0 J2 0

�J2 0 0

0 0 0

0
B@

1
CA ð36Þ

where J2 is the 2D symplectic identity matrix. Theffiffiffi
2

p
is a normalization factor such that ðsL;sLÞ ¼

ðsxy; sxyÞ ¼ 1: The explicit relationships among the
sa matrices and the invariants in Eq. (35) are

ðXXT; sxÞ ¼ Ix=2; ðXXT;syÞ ¼ Iy=2; ðXXT; szÞ ¼

Iz=2; ðXXT;sxyÞ ¼ Ixy=
ffiffiffi
2

p
; and ðXXT;sLÞ ¼

Lz=
ffiffiffi
2

p
: For convenience we remove the

ffiffiffi
2

p
by

defining the emittances as

ea 	
1

2
/IaS ð37Þ

the same as the familiar relation in uncoupled
motion, instead of ð/XXTS;saÞ in Eq. (14). This
definition scales exy and eL as defined in Eq. (14) by

a factor of 1=
ffiffiffi
2

p
: To be clear, all the subspace

emittances used below are defined by Eq. (37).
Transforming the sa matrices and the damping

and diffusion matrices to the Larmor frame, we
compute the scalar products in Eq. (15) and obtain
the emittance evolution equation

dei

ds
¼

X5
i¼1

Lijej þ wi: ð38Þ

The damping constant matrix L reads

L ¼

�Zx 0 c1 c2 0

0 �Zy c1 c2 0
c1
2

c1
2

�Zxy 0 0
c2
2

c2
2

0 �ZL 0

0 0 0 0 �Zz

0
BBBBBB@

1
CCCCCCA

ð39Þ

where

Zx ¼ Z� ð@ *xZÞ *Dx ð40aÞ

Zy ¼ Z� ð@ *yZÞ *Dy ð40bÞ

Zxy ¼ ZL ¼ Z�
1

2
½ð@ *xZÞ *Dx þ ð@ *yZÞ *Dy
 ð40cÞ

Zz ¼ @dZþ ð@ *xZÞ *Dx þ ð@ *yZÞ *Dy ð40dÞ

c1 ¼
1

2
½ð@ *xZÞ *Dy þ ð@ *yZÞ *Dx
 ð40eÞ

c2 ¼ #bsbTZþ
1

2
½ð@ *xZÞðaT *Dy þ bT *D0

yÞ

� ð@ *yZÞðaT *Dx þ bT *D0
xÞ
 ð40fÞ

and the excitations read

wx ¼
1

2
bTwþ

1

2
Hx wd ð41aÞ
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wy ¼
1

2
bTwþ

1

2
Hywd ð41bÞ

wxy ¼
1

2
Hxywd ð41cÞ

wL ¼
1

2
HLwd ð41dÞ

wz ¼
1

2
bLwd þ

1

2
gLð *D

2
x þ *D2

yÞw: ð41eÞ

The H-functions (Hx; Hy; Hxy; and HL) are
defined by replacing the phase-space variables in
the invariants of Eq. (35) with the dispersion
functions and their derivatives. For example, as
in radiation damping theory, Hx ¼ gT *D2

x þ
2aT *Dx

*D0
x þ bT *D02

x :
To emphasize the rotation symmetry and

simplify the results, we use the symmetric and
asymmetric invariants Is;a ¼ ðIx7IyÞ=2 and emit-
tances es;a ¼ ðex7eyÞ=2: Using these definitions,
the equilibrium Gaussian distribution reads

rðX Þ ¼
1

ð2pÞ3e6D
e
�
esIs�eaIa�exyIxy�eLLz

e2s�e2a�e2xy�e2
L

�
Iz

2ez ð42Þ

where the 6D emittance relates to the subspace
emittances as

e6D ¼ ðe2s � e2a � e2xy � e2LÞez: ð43Þ

The emittance evolution equations become

e0s ¼ � ðZ� ec�Þes þ ecþea þ esþexy

þ b eL þ ws ð44aÞ

e0a ¼ �ðZ� ec�Þea þ ecþes þ wa ð44bÞ

e0xy ¼ �ðZ� ec�Þexy þ esþes þ wxy ð44cÞ

e0L ¼ �ðZ� ec�ÞeL þ bes þ wL ð44dÞ

e0z ¼ �ð@dZþ 2ec�Þez þ wz ð44eÞ

where e ¼ j~DDj � j~@@Zj=2 is half of the maximum
exchange rate through dispersions and wedges,
c7 ¼ cosðyD7yWÞ and s7 ¼ sinðyD7yWÞ with yD
and yW being the orientations of the dispersion

vector and the wedges, and b ¼ Z #bsbT þ aTes� þ
bTe0s0� with e0 ¼ j~DD0j � j~@@Zj=2 and s0� ¼ sinðyD0 �
yWÞ: The excitation terms for the symmetric and
asymmetric emittances are

ws ¼
1

2
bTwþ

1

2
Hs wd ð45aÞ

wa ¼
1

2
Hawd: ð45bÞ

Note that the energy straggling heats all subspaces
while the multiple scattering heats only the
symmetric transverse emittance and the long-
itudinal emittance.
The emittance evolution equation (44), shows

the same feature of emittance exchange between
the transverse and longitudinal degrees of freedom
as in Eq. (29). Note that solenoidal channels have
the advantage that the reduction of the transverse
cooling rate is evenly shared in both transverse
planes and thus is only half of the value in a
quadrupole channel with dispersion in one plane.
The longitudinal emittance evolution is still
independent of the transverse evolution, but the
evolution of transverse emittances is coupled due
to the degeneracy. As mentioned before, it is
usually a good approximation to average the
emittance evolution equation over a period. After
averaging, the equilibrium emittances can be
solved by straightforward matrix inversion as

eeq:s C
Z� ec� %ws þ ecþ %wa þ esþ %wxy þ %b%wL

Z� ec�
2 � ecþ

2 � esþ
2 � %b2

ð46aÞ

eeq:a Cðecþeeq:s þ %waÞ=Z� ec� ð46bÞ

eeq:xy Cðesþeeq:s þ %wxyÞ=Z� ec� ð46cÞ

eeq:L Cð %beeq:s þ %wLÞ=Z� ec� ð46dÞ

eeq:z C%wz=@dZþ 2ec�: ð46eÞ

Here the overline indicates averaging over a
period. The longitudinal cooling length is
@dZþ 2ec�

�1
: Due to coupling, the cooling length

for each transverse emittance is not unique but has
three different values: Z� ec�

�1 and
ðZ� ec�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ecþ

2 þ esþ
2 þ %b2

p
Þ�1: Clearly one may

introduce various integrals to characterize the
cooling process in a solenoidal channel. In cooling
channel designs, one should minimize ecþ; esþ;
and %b as well as the excitations. See more
discussion on transverse cooling in Ref. [17] and
on 6D cooling in Ref. [20].
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The emittance evolution equation, Eq. (44), is
derived for solenoidal channels with symmetric
focusing and no dispersion in the rf field. How-
ever, it may still provide a useful estimate for the
proposed cooling channels that seem not satisfy
these conditions, because the focusing from
solenoids is much stronger than the weak focusing
from bending dipoles, and the muons’ longitudinal
position variation due to dispersion
(~DD � ~PP � ~DD0 � ~XX ) is much smaller than the rf
wavelength.
6. Conclusion

We presented a linear beam-envelope theory of
ionization cooling. A small set of emittance
evolution equations that governs the cooling
process is derived. Equilibrium emittances and
damping constants are obtained. The systematic
treatment of the cooling and heating mechanisms
revealed new heating sources. The analytical
results can be used to evaluate cooling channel
designs the same way that radiation integrals are
used in storage ring designs. Further improve-
ments may take into account the longitudinal
nonlinear effects due to the fact that, in all
proposed cooling channels, muons fill the whole
rf bucket instead of just the linear core area.
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